If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x+5x^2+3x+2x-4x^2=0
We add all the numbers together, and all the variables
4x^2+9x=0
a = 4; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·4·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*4}=\frac{-18}{8} =-2+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*4}=\frac{0}{8} =0 $
| 20;5x-7=107 | | -3(4p+3)-2(6-11p)=3(8+3p) | | 5-3y=26 | | 2(x+1)=0.50(4x+2) | | 2(x+1)=1 | | 5=2.2w | | 5=2.2w | | 12b=4-8 | | 2(x+1)=2x | | 5a=-12-3 | | 0.5(3x+8)=4(1.5-1.25) | | 6(x-4)+4=6x+5 | | 3×x=14 | | 2m+6=16. | | 12(3x+4)−5(2x−5)=6x−67 | | 21x-7=21 | | -1/2m–3=9 | | 4u+6=20 | | 10-(x-6)=3(x+7) | | (4/25)^-3x=(32/3125) | | 3=2y+4 | | x-4/5=10/35 | | 7x-2=5/6x-4 | | 16=12x-x^2 | | 6x+13=2x+10 | | 113+16-14x=-12+27x+19 | | 113+16-14=-12+27x+19 | | 6k-5+4k-k=12•2 | | X^2+2x-14.5=0 | | X^2-2x+14.5=0 | | 76(-2x-3)=0.9x+6 | | (7/3t)-2=4+7t |